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Figure 1: A pipeline overview of ViStruct. (a) User provides a visualization task description and static charts. (b) Behind the
scenes, the system generates a detailed textual description of the chart and identifies its geometric elements. (c7) The high-level
task is decomposed into a sequence of low-level component subtasks. (c2) An example shows how the original task is broken
down into a step-by-step reasoning flow. (d) The system detects and labels chart regions based on geometric features and spatial
relationships.(e) The chart is automatically annotated with task-relevant Areas of Interest (AOIs) to guide user attention.

ABSTRACT

Data visualization tasks often require multi-step reasoning, and the
interpretive strategies experts use—such as decomposing complex
goals into smaller subtasks and selectively attending to key chart
regions—are rarely made explicit. We developed ViStruct as an
automated pipeline that simulates these expert behaviours by break-
ing high-level visual questions into structured analytic steps and
highlighting semantically relevant chart areas. Leveraging large
language and vision-language models, we evaluate the system on
45 tasks across 12 chart types and validate its outputs with trained
visualization users, confirming its ability to produce interpretable
and expert-aligned reasoning sequences.

Keywords: Data Visualization, Task Decomposition, Large Lan-
guage Models(LLMs), Guidance System, Computer Vision

1 INTRODUCTION

Decomposing a complex task into smaller, manageable compo-
nents is widely recognized as an effective strategy for problem-
solving [5, 14, 18,28]. In many domains, expert users perform such
decomposition intuitively, applying structured strategies to reason
through problems efficiently. However, these strategies are often
implicit and difficult to observe, replicate, or teach [20]. Conse-
quently, by simulating how experts break down complex tasks, we
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can externalize these internal reasoning patterns and make them
accessible for analysis, instruction, or further automation [13,27].

Data visualization tasks are a prime example of this need. They
involve multiple cognitive stages and high-level goals [15], such
as identifying trends or comparing proportions, which are typically
achieved through a sequence of low-level perceptual and analytic
operations [4]. Experts, defined as experienced users with demon-
strated fluency in interpreting standard chart types, typically perform
these reasoning steps fluidly and implicitly. Consequently, their
structured reasoning remains hidden, making it challenging to study,
explain, or teach [12,26]. This highlights a significant gap in captur-
ing and modelling expert reasoning processes; bridging this gap is
crucial for developing more interpretable visualization systems and
laying the foundations for educational tools.

Despite this need, generating expert-level reasoning for visual-
ization analysis remains challenging. Task decomposition must be
tailored to the structure and semantics of each chart, and each an-
alytic step must be precisely linked to the relevant visual regions.
Manually crafting these reasoning is infeasible at scale due to the
wide variability in visualization goals, subtasks, and chart designs.
Although Al-driven approaches have successfully decomposed com-
plex tasks in other domains [24, 25], their potential for decomposing
visualization-specific tasks and delivering precise visual attention
guidance remains largely unexplored.

To bridge this gap, we introduce ViStruct, an automated pipeline
that simulates expert-like visual reasoning through structured task
decomposition and region-based visual attention. ViStruct leverages
large-language (LLM) and vision-language models (VLM) to sys-
tematically decompose visualization tasks, dynamically identify
context-specific AOIs, and effectively produce actionable instruc-
tional sequences tailored to the structure and semantics of the chart.
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To validate the scalability of the proposed technique, we applied
it to 45 visualization tasks across 12 chart types. We evaluated
our approach with 20 domain experts, confirming the expert-like
guidance and transparency provided by ViStruct. The resulting
technique is publicly available as an open-source interactive platform
for researchers and practitioners, accessible here.

2 RELATED WORK

Our work draws upon related efforts in Al-driven reasoning frame-
works for task decomposition and in vision-language approaches for
spatial and semantic understanding of data visualizations.

2.1 Al Assisted Task Decomposition

Previous research has investigated how Al can assist in task de-
composition. Techniques like Chain-of-Thought prompting [29]
and ReAct [31] help structure reasoning through sequential steps
and action-based feedback. These methods are often embedded
in systems such as Talk2Data [8] and LightVA [34] to support in-
teractive visual analysis and analytic planning. Additionally, some
approaches emphasize user control and trust by letting users refine or
verify the decomposition through interactive steps [14], promoting
transparency and interpretability.

In the context of data visualization, explainable Al frameworks [1]
and workflow automation tools [3] follow a reactive paradigm, where
users must explicitly request task decomposition or guidance. This
reactive design places the burden of initiative and strategy on the
user, which deviates from how experts naturally guide others through
analysis. Rather than waiting for user prompts, ViStruct anticipates
the visual analytic process by automatically breaking down the visu-
alization task and highlighting relevant chart regions in a meaningful
order, mirroring the reasoning that experts employ.

2.2 BRegion-Aware Processing in Data Visualization

Recent work reveals that while VLMs show some capability in
interpreting chart structures and high-level relationships [10], they
often lack consistency and robustness [19]. Many models struggle
with understanding visual language and fail to capture relational
information accurately, which is critical for interpreting charts [9].
Even advanced models still face challenges in reliably extracting
meaningful visual relationships.

Newer approaches emphasize region-based understanding.
MapReader [33] demonstrates how spatial visualizations benefit
from region-level segmentation, while intermediate text represen-
tations [32] have been used to improve flowchart comprehension.
With the help of OpenCV, the Chain-of-Region technique [16] pro-
poses explicitly segmenting charts into interpretable regions (axes,
bars, legends, etc) and combining this with VLMs enables precise
coordinate-to-region mapping, which is crucial for tasks like identi-
fying the correct values in bar or line charts.

ViStruct leverages region-based techniques by detecting seman-
tically meaningful regions within charts and defining task-specific
AOIs. Motivated by sequential visual cues (SVCs) [23], which guide
attention through critical regions in order, ViStruct integrates region
segmentation directly into VLMs, aligning visual cues with each
step of the task decomposition.

3 DESIGN GOALS

In designing ViStruct, we aimed to simulate expert-like reasoning
in visualization tasks, particularly how experts interpret charts step
by step and focus on relevant visual regions. To derive these de-
sign goals, we extensively reviewed visualization and cognitive sci-
ence literature and analyzed known distinctions in how experts and
novices approach visual reasoning. Prior studies show that experts
systematically attend to semantically meaningful regions, interpret
visual encodings through structured reasoning sequences, and inte-
grate spatial and semantic cues to guide their analysis [6,17,21,22].
The design goals for ViStruct are:

G1: Semantic Region Understanding During the encoding stage
of visualization comprehension, experts naturally identify and in-
terpret distinct semantic regions of a chart (axes, data marks, and
labels) to extract relevant visual information [6]. Effective encod-
ing requires accurately understanding each region’s roles within
the visual structure [21]. Therefore, the system must detect these
components accurately and assign labels meaningfully reflecting
each component’s function.

G2: Precise Coordinate Mapping In the decoding stage, the visual
elements identified must be translated into their corresponding quan-
titative meanings. This process involves precisely mapping spatial
features, such as the height of bars or the positions of data points,
to numerical values through alignment with reference regions and
axis scales [21]. The system must support this decoding step so that
users can interpret the quantitative information embedded within the
spatial arrangement of chart components.

G3: Structured Task Decomposition Experts often approach vi-
sualization tasks by intuitively breaking them down into smaller
analytic steps without making this process explicit [4]. This de-
composition happens internally and fluidly, informed by experience
and familiarity with visual encoding strategies [2]. ViStruct aims to
simulate this expert behaviour by externalizing the reasoning path: it
generates a structured sequence of subtasks that mirrors the analytic
flow an expert might follow.

G4: Supporting Diverse Data Encoding Charts use a wide range
of symbols, layouts, and dimensional mappings to encode data; each
may call for a different approach to interpretation [7]. To support
diverse chart types and visualization tasks, the system must accu-
rately classify chart components by integrating information from
both textual descriptions and geometric shapes.

GS: Interpretability and Transparency Every stage of the reason-
ing process should be clearly explained to improve interpretability.
This includes how regions are divided, what data is extracted, and
why certain decisions are made. ViStruct enhances this process us-
ing visual attention guidance [11,30], such as highlights and circled
AOIs, to direct users toward task-relevant areas. These visual cues
allow users to follow the model’s interpretation path.

4 VISTRUCT

Considering the design requirements, we developed ViStruct as a
prototype system to explore automated, expert-like reasoning of vi-
sualizations through chart decomposition and visual guidance. This
section outlines the ViStruct pipeline and its integration, beginning
with a user-facing scenario and then detailing each system compo-
nent: chart characterization, task decomposition, region annotation,
and attention-guided output. For each stage, we describe how it
supports the design goals introduced in Section 3.

ViStruct is implemented as a prototype interactive platform using
TypeScript and the Next.js framework, with a backend powered
by OpenCV for region detection. The system is model-agnostic
and adaptable to different vision-language models. In our initial
experiments, We tested Gemini-2-Flash!, GPT-4V2, and Claude 3.7°.
on structured chart inputs at each stage of the pipeline. We selected
Gemini-2-Flash for integration due to its faster response time and
more reliable performance in understanding visual elements.

4.1 Overview and Usage Scenario

ViStruct simulates how chart-literate experts approach visual rea-
soning tasks, especially those in visual literacy assessments such as
VLAT*. These tasks are intended not to extract novel insights but to
train users in structured interpretation strategies that experts implic-
itly use. ViStruct externalizes these strategies through interactive,
step-by-step visual guidance.

' Gemini-2-Flash: https:/deepmind.google/technologies/gemini/flash
2GPT-4V: https://openai.com/research/gpt-4v-system-card

3Claude 3.7: https://www.anthropic.com/news/claude-3-7-sonnet
4VLAT: https://bckwon.pythonanywhere.com/
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Given a static chart and a user-defined visualization question,
ViStruct processes the input through multiple stages (Fig.1). It
begins by identifying the chart type and extracting structural ele-
ments (e.g., bars, axes, labels) using OpenCV and Gemini-2-Flash
(Sec.4.2), supporting G1: Semantic Region Understanding. This
structured representation is passed to an LLM-driven pipeline to
decompose the question into low-level analytic subtasks (Sec.4.3),
supporting G3: Structured Task Decomposition. Subtasks are
organized into a coherent, editable flow (Sec.4.4), ensuring trans-
parency (GS5). Concurrently, precise visual regions associated with
each subtask are identified and annotated (Sec. 4.5), enabling ac-
curate coordinate mapping (G2). Users progress step-by-step with
interactive visual cues highlighting these Areas of Interest (AOIs).

To demonstrate how ViStruct operates in practice, we present a
scenario inspired by the VLAT questionnaire, where a user analyzes
a chart of Olympic medals (see Fig. 1). The chart is a 100% stacked
bar chart that displays each country’s distribution of medals: gold,
silver, and bronze. The user answers the question: “Which country
has the smallest proportion of gold medals?” Although this question
may seem straightforward, answering it visually involves several
steps. The user must identify the gold medal segments, estimate
their relative height in proportion to the total height of the bar, and
make comparisons across different countries while disregarding
other visually present but irrelevant data.

ViStruct automatically parses the chart into semantic regions such
as bars, axes, and legends, supporting G1. Users can explore the
chart interactively (e.g., hovering over a segment shows: Gold medal
count for USA). The system decomposes the task into a structured
flow (e.g., isolate gold segments, read segment heights, normalize
by bar total, compare proportions), surfacing the kind of stepwise
reasoning that experts typically perform internally, supporting G3.
To assist decoding, the system draws boundary lines and reference
overlays (Fig. le), enabling accurate interpretation of visual encod-
ings (G2). Finally, each subtask is editable, and the whole reasoning
sequence is transparent, supporting GS5.

100% STACKED BAR CHART - Question 1:  Which country has the lowest proportion of Gold medals?
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Figure 2: (T) Task Decomposition: The system presents a low-
level component task breakdown derived from the user’s high-level
question, categorized by task type. (W) Editable Workflow Interface:
Users can view and manipulate the task structure and customize the
workflow, selecting variable instances and reordering steps.

4.2 Chart Characterization

ViStruct begins by characterizing the input chart to extract its struc-
tural and semantic layout as a foundation for downstream reasoning.
Gemini-2-Flash organizes them into a structured JSON represen-
tation, including axis ranges, variable names, data groupings, and
encoding types.

To improve the reliability of OpenCV-based region detection,
graphical elements are categorized into four shape types: line-based,
dot-based, rectangular, and irregular. This classification allows
ViStruct to adapt region analysis methods to the chart’s visual encod-
ing scheme. Chart characterization supports G4 by enabling ViStruct
to generalize across diverse chart types and visual conventions.

4.3 Task Decomposition

ViStruct uses a multi-stage prompting framework with three se-
quential prompts to decompose high-level user tasks into low-level
analytic subtasks. The LLM operates on a structured input that
includes (1) the user’s natural language query, (2) the JSON chart
description (Sec. 4.2), and (3) a list of labelled chart regions with
spatial metadata.

Decomposition is guided by a predefined taxonomy of ten low-
level task types [4]. The first prompt produces a breakdown based on
this taxonomy. The second refines each step to ensure it is grounded
in specific, executable, and sufficiently detailed chart regions. If
a step is too abstract, the LLM splits it into atomic components.
The third prompt validates the structure, resolves step dependencies,
and removes redundant subtasks (e.g., repeating the same operation
across different chart elements).

This breakdown-refine—verify process ensures each step is pre-
cise, executable, and aligned with the task structure. It directly
supports G3 by enabling structured task decomposition and G4 by
adapting reasoning to diverse chart types and visual encodings.

4.4 Decomposition Flow Example

Due to visual analysis’s compositional nature, there is often no
correct way to sequence low-level operations. ViStruct presents
one example workflow based on the decomposition results (Fig. 2),
illustrating a valid approach. Recognizing that users may prefer
different reasoning paths, the system allows them to modify the
sequence, adjust parameters, or reorganize tasks to fit their analysis
strategy better. The LLM then validates the revised flow to ensure
logical consistency. If valid, both the workflow and the underlying
decomposed tasks are updated accordingly.
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Figure 3: Workflow of region identification: The input chart is
processed using OpenCYV to identify distinct regions corresponding to
chart segments. These regions are labeled by the system. VLM then
identifies each annotated region with meaningful descriptions.

4.5 Region Identification

Region identification is a key step in the ViStruct pipeline, providing
the precise coordinate-level data needed for visual guidance and
accurate annotation. To highlight AOIs during task execution, the
system must first detect all meaningful chart components, including
axes, labels, data marks, and legends.

The process begins with OpenCV-based text detection (Fig. 3),
which identifies individual characters and outputs their bounding
boxes (x-min, x-max, y-min, y-max). Characters with similar x-
or y-values are grouped into complete text elements, allowing the
system to reconstruct axis labels, ticks, and legend entries.

For non-text elements, OpenCV’s edge detection and colour seg-
mentation identify visual regions such as bars, pie slices, or legend
swatches based on shape boundaries and colour differences. In charts
with continuous marks like lines or areas, the system uses identified
axis ticks as reference points and interpolates pixel coordinates along
the visual path to map data values.

This yields a complete set of region coordinates but without
semantic meaning. To bridge this gap, the system overlays numbered



labels on an annotated chart image and sends coordinate data to
Gemini-2-Flash, which returns natural language descriptions for
each region (e.g., "Gold medal for the USA"). This transforms low-
level visual segments into semantically meaningful components,
directly supporting G1 by identifying functional chart regions and
G2 by linking visual geometry to interpretable data values.

4.6 Visual Attention Guidance

After chart regions are semantically identified, ViStruct generates
step-by-step visual guidance to help users focus on relevant elements
and understand how to extract the correct information from the chart.

To generate this guidance, the system provides the LLM with
structured input: (1) the current low-level subtask, (2) a JSON
object detailing chart regions, their coordinates, region IDS, and
semantic labels, and (3) task-specific metadata from stage 4.2. Each
of the subtask types uses an individual prompt to ensure contextual
accuracy and clarity.

Based on this input, the LLM generates a sequence of visual
guidance steps tied to specific regions or reference points. Some,
like bar segments or axis labels, are directly retrieved from the JSON,
while others involve simple geometric reasoning. For instance, the
system draws a horizontal line from the bar’s edge to the y-axis to
read a bar’s top value, guiding the user’s attention.

ViStruct creates an interpretable and grounded guidance flow by
combining textual instructions with precise visual markers. This
directly supports G2 by helping users connect spatial features to
quantitative meaning and G5 by making each reasoning step trans-
parent and visually traceable.

5 EVALUATING THE VISTRUCT PIPELINE

We conducted two evaluations to assess ViStruct’s effectiveness as
an expert-like visual reasoning pipeline: a performance evaluation to
test decomposition accuracy and scalability and an expert evaluation
to understand user perceptions regarding clarity, usefulness, and
expert-like behaviour.

5.1 Performance Evaluation

We tested ViStruct on 45 visualization tasks drawn from VLAT and
Mini-VLAT, covering all 12 chart types (G4). Each task was exe-
cuted five times, resulting in 225 trials. For each trial, we evaluated
ViStruct’s ability to identify semantic chart regions (G1), map visual
features to data values (G2), and generate coherent task decompo-
sitions (G3). ViStruct produced correct outputs in 192 of the 225
trials (85.33%). It performed consistently on concrete tasks such as
value lookup and filtering. In contrast, more abstract tasks such as
correlation analysis in multidimensional charts (i.e., bubble charts)
occasionally showed inconsistencies by selecting the wrong visual
channels for analysis.

5.2 Expert Review

We conducted an expert evaluation to assess whether ViStruct demon-
strates expert-like behaviour and provides valuable guidance. Each
participant was assigned three charts and could select any task from
the question bank. They evaluated ViStruct’s decomposition, work-
flow logic, region identification, and visual guidance. Specifically,
they rated ViStruct on: (/) usefulness for novice users, (2) accu-
racy of subtasks and AOIs, and (3) alignment with their reasoning.
Participants also gave open-ended feedback and used a think-aloud
protocol during tasks.

We recruited 20 participants (M=12, F=8), including 12 under-
graduates who completed a data visualization course, 4 graduate
researchers, and 4 industry analysts. All were screened for chart
familiarity and reported an average expertise rating of 6.35/7. Each
session lasted 30 minutes, and participants received a $10 gift card.

Experts’ Perceptions and Feedback. Participants rated ViStruct
highly for guiding visual reasoning (M = 6.14, SD = 1.38); the
accuracy of its decompositions and AOIs scored 5.93 (SD = 1.58),
and its perceived expert-likeness was 5.97 (SD = 1.53).

Step-by-step guidance supported participants in organizing
their reasoning. Several users noted that the combination of vi-
sual overlays and sequential explanations clarified how to approach
complex charts. One participant remarked that “visual overlays
alongside explanatory text are a useful step-by-step guide... es-
pecially with bubble charts where there are more variables than
people are used to” (p14). This form of guided interaction helped
participants build a mental model of the task structure (G2, G5).

Region annotations anchored users’ attention to relevant
chart elements. Participants appreciated the system’s ability to
highlight and label specific visual components (G1). Numbered re-
gions were especially helpful for less experienced users, who found
the annotations reduced confusion (GS5). One participant commented
that “the mapping feature... helps visually guide them in each step
by highlighting the regions to focus on” (p9).

Experts interpreted the decomposition as instructional guid-
ance aimed at novice users. While many agreed that the step-by-
step breakdown resembled how they would teach a novice (G3),
they did not feel the need to follow every step themselves. One
participant observed that “the steps were clear and resemble how a
domain expert would interpret and guide someone” (p3). In contrast,
some others noted that “for experienced people, some of the steps
might be a bit too detailed, but someone who is new to these charts
could find it very helpful” (p8).

6 LIMITATIONS AND FUTURE WORK

Varying Effectiveness of Guidance Across Task Types: Our eval-
uation showed that the AOI-based guidance works well for concrete
tasks such as filtering or locating values, where visual cues are di-
rect. However, AOIs alone are less effective for more abstract tasks
(i.e., correlation). These tasks require integrating multiple elements,
suggesting that richer cues, such as tooltips or side panels, may be
more appropriate. Future work should explore customized guidance
strategies through participatory design or user feedback.
Supporting Diverse Reasoning Paths and Scaffolding: While the
ViStruct decomposition strategy is effective for many tasks, it may
not always match how users reason about complex visualizations.
Abstract tasks often permit multiple valid approaches, so a fixed
breakdown can be limiting. Future work should enable flexible,
user-driven reasoning by adding an interactive chatbot that refines
task flows, clarifies goals, and adapts strategies to each chart. In
addition, the system could benefit from providing contextual ex-
planations that clarify the rationale behind each step, helping users
understand not just what to do, but why certain visual reasoning
strategies are effective.

Human-in-the-loop Opportunities and Alignment with Novice
Intentions: A significant portion of ViStruct’s failures in visual
attention guidance stemmed from errors in chart region identifica-
tion, particularly due to limitations in OpenCV-based detection (e.g.,
missed or fragmented visual elements). These failures impact the
quality of AOI mapping and, by extension, the effectiveness of task
decomposition. Rather than relying solely on automation, we see
an opportunity to introduce a human-in-the-loop setting where in-
teractive correction of detected regions could reduce such errors
while simultaneously supporting learning. This form of produc-
tive friction [13] may help novices develop a deeper understanding
of visualization literacy by engaging directly with the structural
interpretation of charts.

7 CONCLUSION

In conclusion, we present ViStruct, an automated pipeline that sim-
plifies visualization tasks by decomposing them into semantically
meaningful subtasks, extracting structured region information, and
providing step-by-step visual guidance. The prototyped system is
deployed and can be accessed here. Our evaluation shows reli-
able performance across diverse static charts and tasks. We plan
to enhance flexibility with context-aware guidance and extend the
approach to interactive settings to better support insight extraction.
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